# **B.SC. FOURTH SEMESTER (PROGRAMME) EXAMINATIONS, 2021**

Subject: Mathematics Course ID: 42110

Course Title: Graph Theory Course Code: SP/MTH/404/SEC-2

Full Marks: 40 Time: 2 Hours

## The figures in the margin indicate full marks

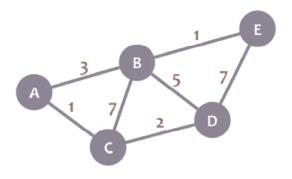
#### Notations and symbols have their usual meaning.

## 1. Answer any five of the following questions:

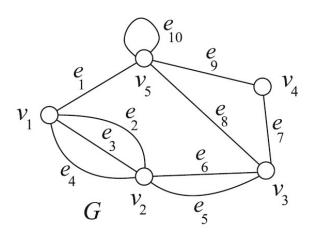
 $(2 \times 5 = 10)$ 

- a) Define graph and digraph.
- b) Define graph isomorphism with example.
- c) Define Eulerian graph and Hamiltonian graph.
- d) Show that a complete graph with n number of vertices has  $\frac{n(n-1)}{2}$  number of edges.
- e) Draw simple graphs of three and four vertices, and two and five edges, respectively.
- f) Show that every acyclic graph is a simple graph.
- g) How many edges does the graph  $K_{3,6}$  contain?
- h) Draw a graph with the following matrix as adjacent matrix

$$\begin{pmatrix} 0 & 1 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \end{pmatrix}.$$


## 2. Answer any four of the following questions:

 $(5 \times 4 = 20)$ 

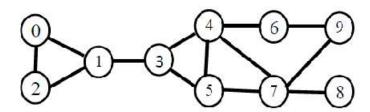

- a) (i) If G is a simple graph of order n with minimum vertex degree  $\geq \frac{n-1}{2}$ , then show that G is connected.
  - (ii) If a graph contains exactly two vertices of odd degree then prove that there exists a path between these two vertices. 3+2=5
- b) (i) If G is a graph in which the degree of each vertex is at least 2, then show that G contains a cycle.
  - (ii) Let G be a graph with n number of vertices and n-1 number of edges. Prove that G has either a pendant vertex or an isolated vertex. 3+2=5
- c) Define tree. Show that every tree has atleast two leaves.

1+4=5

- d) Draw a graph with five vertices  $v_1$ ,  $v_2$ ,  $v_3$ ,  $v_4$ ,  $v_5$  such that  $deg\ v_1=3$ ,  $v_2$  is an odd degree vertex,  $deg\ v_3=2$ ,  $v_4$  and  $v_5$  are adjacent.
- e) Using Dijkstra's algorithm, find the shortest path from the node C to E in the following graph



f) Define the adjacency matrix and incidence matrix of a graph. Find out the adjacency matrix and incidence matrix of the following graph G. 2+3=5




## 3. Answer any one of the following questions:

 $(10 \times 1 = 10)$ 

5

- a) (i) Prove that a graph T is a tree if and only if each pair of vertices of T are connected by a unique path. 5+1+4
  - (ii) Define a spanning tree of a graph. Find a spanning tree of the following graph.



- **b)** (i) Let G be a nonempty graph with order n (> 2). If G is bipartite, then prove that the length of any cycle of the graph is even.
  - (ii) Show that a simple graph (order ≥2) has atleast two vertices of the same degree. 5+5

\*\*\*